综述与讲座 >文章正文
综述与讲座 >文章正文
Progress in Research on Propofol-Opioid Intravenous Anesthesia <?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 杨 宁综述 左明章审校 卫生部北京医院麻醉科,北京100730 责任作者及联系方式:左明章,010-65132266-6409 Ning-Yang MD,Ming-zhang Zuo MD Department of Anesthesiology,Beijing Hospital,Being 100730,China ABSTRACT Novel intravenous administration devices and improved anaesthetic depth monitoring,which have created a basis for the theories and devices of administration of propofol-opioid anaesthesia. This article describes the current strategies regarding the application of this type of anaesthesia,focusing on three aspects:① Application of pharmacokinetic- pharmacodynamic knowledge of propofol and opioids,particularly paying attention to pharmacodynamic interactions between them;②progress in intravenous infusion technology;③Application of bispectral index monitoring. In a word,these techniques have improved controbility and safety of anaesthetic practice. Key words:Intravenous Anesthesia;Propofol;Opioid;Bispectral Index Monitoring Corresponding author:Ming-zhang Zuo,010-65132266-6409 |
一、药代动力学-药效动力学<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 静脉麻醉药和阿片类药物在个体间存在显著的差异,这种 除了单一药物的药代-药效动力学差异外,近年来许多学者致力于药物相互作用的研究。已知联合用药目的在于减少由单一用药引起的血流动力学改变、呼吸抑制、苏醒延迟等副作用,但联合用药的治疗窗较窄,我们需要根据它们的量效关系、相互作用选择合适的静脉麻醉药物及配伍。在表1中描述了丙泊酚和四个最常用的阿片类药物在单独使用和联合使用时不同的药理学参数。但临床工作中,需要根据不同的临床界点来确定最佳浓度配伍[7-8]。 1. 丙泊酚的药理学 丙泊酚脂溶性强,起效迅速、作用时间短,能快速透过血 丙泊酚的剂量需根据年龄、性别进行调整。Schnider 等 丙泊酚削弱了心血管和交感肾上腺轴功能,导致明显的低血压。其机制可能是Ca2+内流的减少,使动脉的血管张力减低,导致血压下降。心肌细胞的胞质内自由的Ca2+减少致使心肌收缩力降低,导致了负性变力的作用。因为丙泊酚可特殊作用于位于中枢化学感受器的化学反射弧,即使在很小的浓度也可抑制对急性缺氧的呼吸反射。个体化给药是避免丙泊酚的不良反应的有效方法。 |
2. 阿片类药物的药理学<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 临床常用的四种阿片类药物芬太尼、阿芬太尼、舒芬太尼、 瑞芬太尼是这四种阿片类药物中代谢最快的药物,t1/2Ke0最短、清除迅速、中央室容积最小、效应室达峰时间最短。由于它是由通过组织非特异性酯酶代谢,即使持续输注数小时或数天,它仍具有最短的时-量相关半衰期。持续输注3小时后,测得瑞芬太尼的时-量相关半衰期为3min,呼吸恢复时间为5min,然而阿芬太尼的时间相关半衰期为47min,作用消失时间为54min。由于雷米芬太尼达到稳态浓度非常迅速,输注时间长短几乎不会影响瑞芬太尼的半衰期。而阿芬太尼和舒芬太尼持续给药需要几小时后才能达到稳态浓度,芬太尼则随着输注时间的延长其半衰期总在不断地延长,难以达到稳态浓度,因此瑞芬太尼被广泛应用于持续输注中。(图1) 瑞芬太尼经血液和组织中的非特异性酯酶水解清除后的原形 此外性别、年龄、瘦体重(Lean Body Mass, LBM)、种族差异也显著影响阿片类药物的分布和清除。年龄由20至80岁,t1/2Ke0几乎延长50%,效应室的平衡速率要明显减慢。体重及组织成分对参数的估算也可产生影响,瘦体重在瑞芬太尼的分布中也是一个显著的相关因素,有人认为无论是年轻还是老年肥胖病人中,瑞芬太尼都应按照瘦体重法,而不是总体重给药[15]。但以瘦体重做均衡后是否可获得更准确的参数有不同的看法。其计算公式如下: LBM(男)=1.1×TBW-128×(TBW/Ht)2 LBM(女)=1.07×TBW-148×(TBW/Ht)2 TBW: 总体重(kg) Ht: 身高(cm) 在药效动力学方面,阿片类药物非常相似,它们都是通过激活m受体来发挥镇痛、镇静的生物学效应的。其不良反应主要包括呼吸抑制、恶心呕吐、肌僵直、窦缓和瘙痒。这几种药物者间的效价比为1mg/ml芬太尼: 0.1mg/ml舒芬太尼:70mg/ml阿芬太尼: 2mg/ml瑞芬太尼,发生不良反应的程度也与类效价比相似。 |
四、总结<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 本文总结了在过去20~30年间静脉麻醉的发展,静脉麻醉的实施方法从一个以不精确的资料为基础的给药方法,发展至以个体化药代动力学-药效学资料为基础、通过先进的输注设备及精密的监测来进行的完善的麻醉实施手段,对病人的认识从不可知逐渐变成可知的状态。麻醉医生可以通过对药代动力学-药效学知识的积累和认识,对先进的输注技术和设备以及监测技术的掌握,显著提高麻醉工作的可控性、灵活性和安全性。 参考文献 1. Kuipers JA, Boer F, de Roode A, et al. Modeling population pharmacokinetics of lidocaine: should cardiac output be included as a patient factorAnesthesiology, 2001; 94 (4): 566-73. 2. Kuipers JA, Boer F, Olofsen E, et al. Recirculatory and compartmental pharmaco kinetic modeling of alfentanil in pigs: the influence of cardiac output. Anes thesiology,1999; 90 (4): 1146-57. 4. Kharasch ED, Jubert C, Senn T, et al. Intraindividual variability in male he patic CYP3A4 activity assessed by alfentanil and midazolam clearance. J Clin Pharmacol, 1999; 39 (7): 664-9. 7. Mertens MJ, Vuyk J, Olofsen E, et al. Propofol alters the pharmacokinetics of alfentanil in healthy male volunteers. Anesthesiology, 2001; 94 (6): 949-57. 8. Vuyk J, Mertens MJ, Olofsen E, et al. Propofol anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology, 1997; 87(6): 1549-62. 9. Kanto J, Gepts E. Pharmacokinetic implications for the clinical use of propofol. Clin Pharmacokinet, 1989; 17 (5): 308-26. 10. Smith C, McEwan AI, Jhaveri R, et al. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology, 1994; 81 (4): 820-8. 11. Stanski DR, Shafer SL. Quantifying anesthetic drug interaction: implications for drug dosing. Anesthesiology, 1995; 83 (1): 1-5. 12. Vuyk J, Lim T, Engbers FH, et al. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology, 1995; 83 (1): 8-22. 13. Schnider TW, Minto CF, Gambus PL, et al. The influence of method of administr- ation and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology, 1998; 88 (5): 1170-82. 15. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil (II): model application. Anesthesiology ,1997; 86 (1): 24-33 16. Maitre PO, Vozeh S, Heykants J, et al. Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual vari ability in patients. Anesthesiology, 1987; 66 (1): 3-12. 17. Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology, 1995; 83 (6): 1194-204. 18. Vuyk J, Engbers FH, Burm AG, et al. Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology, 1996; 84 (2): 288-99. 19. Schnider TW, Minto CF, Shafer SL, et al. The influence of age on propofol pharmacodynamics. Anesthesiology, 1999; 90 (6): 1502-16. 20. Saint-Maurice C, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth, 1989; 63 (6): 667-70. 21. Kirkpatrick T, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol (Diprivan) in elderly patients. Br J Anaesth, 1988; 60 (2): 146-50. 22. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol influence: a multicenter study. Anesthesiology, 2000; 92 (3): 727-38. |