专家评述 >文章正文
专家评述 >文章正文
罗友军 董振明<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
1 概述
1.1 KATP-C的种类和结构1983年,日本学者Noma应用膜片钳技术在豚鼠心室肌细胞上证实KATPC的存在。随后的研究发现哺乳动物心肌有两种不同的KATPC:一种通常位于细胞膜上(sarcolemmal KATPC,sarc-KATPC或surface KATP channels);另一种分布于线粒体内膜(mitochondrial KATPC,mito-KATPC)。KATPC在心脏、血管平滑肌、胰腺、神经细胞、肾上腺皮质细胞等组织器官上均有分布。(1)sarc-KATPC的分子结构:目前sarc-KATPC的分子结构研究较清楚,它是由内向整流钾通道(Kir)和ABC蛋白(ATP-binding casstte proteins,简称ABC蛋白)组成的复合体。1993年克隆出许多K+通道。Kir家族中(Kir6.x)中有Kir6.1-6共6个亚型。ABC蛋白之一的磺酰脲受体(SUR)为KATPC的调节体,于1995年克隆成功,由1582个氨基酸组成,分子量177KD。其亚型有SUR1、SUR2A、SUR2B等。心肌细胞由Kir6.2与SUR2A,血管平滑肌由Kir6.1与Sur2B构成各自的sarc-KATPC。(2)mito-KATPC的分子结构:1991年Inoue等首次证实mito-KATPC位于线粒体内膜[1]。,随后大量研究从不同角度证实mito-KATPC的存在,但其分子结构仍不清楚,通过药理学对照研究推测mito-KATPC分子结构与Kir6.1/SUR1相似[2]。
1.2 KATPC的生理学特性KATPC在哺乳动物心脏的密度很高,而且在研究过的心肌细胞上发现KATPC表现几乎一致的电生理特性,提示其在进化过程中的保守性,并可能有重要的生理功能。生理条件下心肌KATPC处于关闭状态。其主要特征:(1)通道的动力学特征依赖于K+膜外的电势。对K+的通透有很高的选择性。(2)通道的活性受细胞内核苷酸的调节,细胞内ATP对KATPC起双向调节作用。当心肌发生缺血、能量消耗ATP低于0.2nmol/L时,KATPC开放,K+外流增加,加速复极,动作电位平台期缩短,电压依赖型Ca2+通道活性下降,Ca2+内流减少,心肌收缩力减弱。当心肌和血管平滑肌游离膜片暴露于完全缺乏ATP的溶液中,KATPC自发开放,达颠峰后自发失活。在Mg2+存在下ATP可使这些游离膜片KATPC重新恢复。
2 KATPC和PPC
2.2 KATPC开放剂(potassium channel openers,PCOs)与PPC PCOs直接开放KATPC,是当前人们最感兴趣的研究热点。二氮嗪是特异性的mito-KATPC开放剂;P-1075为特异性的sarc-KATPC开放剂;HMR-1098为特异性的sarc-KATPC阻滞剂;尼可地尔、吡那地尔为非特异性PCOs;阿里卡林(aprikalim)、MCC-134(新合成的阿里卡林类似物),开放sarc-KATPC并阻滞mito-KATPC;5-HD为特异的mito-KATPC阻滞剂;格列本脲(glibenclamide)为非特异性KATPC阻滞剂。大多数实验证实KATPC的心肌保护作用,但不同KATPC开放剂产生的心肌保护作用亦有区别。
|
3 PPC作用机制
3.1 KATPC将细胞代谢和细胞电机械活动耦联,KATPC开放增强缺血/缺氧期耐受,快速复原再灌/复氧期细胞能量状态。Korge等[17]在用游离线粒体制作的I/R模型上发现,心肌保护中起二氮嗪激活mito-KATPC模拟IPC效应,是通过保护线粒体使之度过I/R期间的紧急易损阶段。二氮嗪通过阻滞线粒体通透性转移(mitochondrial permeability transition,MPT)和膜间细胞色素C丢失而强有力地降低线粒体损伤,这两种作用可被5-HD阻断。二氮嗪激活mito-KATPC有利地调节线粒体膜电位(mitochondrial membrane potential,Deltapsi (m),Deltapsi(m)最终恢复对心功能的恢复是必需的,二氮嗪通过抑制Ca2+摄取驱动力进而阻滞MPT。通过分析核磁共振快速扫描Na23和P31标记的离体鼠心波谱,研究在I/R期间KATPC激活对心肌细胞阳离子和能量状态的作用。尼可地尔减弱ATP消耗及细胞内钠离子堆积,延迟缺血期间酸中毒,防止缺血期间心肌缺血性挛缩,5-HD可取消这种作用。在相同条件下,吡那地尔不改变缺血期Na+(i)堆积、ATP消耗和pH值。吡那地尔和尼可地尔明显改善缺血后心功能恢复,大幅度改善Na+(i)内流、蛋白分解代谢率(PCr)和ATP恢复的速度和程度。Na+(i)内流和再灌注PCr恢复存在因果关系。吡那地尔使再灌注期Ca2+摄取减少2倍。尽管KATPC诱导代谢改变是多样的。减弱缺血期酸中毒、细胞能量耗竭、Na+(i)堆积不是PPC的心肌保护必需的。改善再灌注期细胞能量状态、加快再灌注期Na+ (i)复原、减少Ca2+摄取(快速Na+(i)内流的恢复与减少Ca2+摄取存在潜在的因果关系)在PPC心肌保护中起重要作用。因此,再灌注期的心肌细胞的迅速修复能力比保护缺血期阳离子和细胞能量状态更为重要[18]。
3.2 抑制钙超载 用微速摄影共聚焦显微镜检测成年兔心室肌细胞I/R模型中ρ-2荧光(线粒体基质中Ca2+浓度的指标)。ρ-2荧光在缺血期增强,而且在再灌期更强。二氮嗪削弱I/R期间Ca2+的积累,这种作用可被5-HD阻断。环孢素A(线粒体通透转移抑制剂)和米酵菌酸(腺嘌呤核苷转位酶抑制剂,抑制ATP-ADP交换输送)二者都能抑制线粒体膜通透性转运(MPT)但不能改变缺血期Ca2+积累,可明显抑制Ca2+在再灌期的升高。因此推测:MPT只在再灌期Ca2+积累起作用。Mito-KATPC开放促进线粒体膜部分除极进而抑制I/R期Ca2+摄取,防止超载[21]。成纤维细胞生长因子预处理保护肌酸激酶活性抑制再灌注Ca2+超载,这种抗缺血再灌注损伤作用与KATPC有关[22]。<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
18、Fukuda H, Luo CS, Gu X, et al. The effect of K(atp) channel activation on myocardial cationic and energetic status during ischemia and reperfusion: role in cardioprotection. J Mol Cell Cardiol, 2001, 33:545-560.<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
19、Zhang DX, Chen YF, Campbell WB, et al. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res, 2001, 89: 1177
20、Hanley PJ, Mickel M, Loffler M, et al. K(ATP ) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol, 2002, 542:735-741.
21、Murata M, Akao M, O’Rourke B, et al. Mitochondrial ATP2sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res, 2001, 89: 891-898.
22、Cuevas P, Carceller F, Martinez-Coso V, et al. Fibroblast growth factor cardioprotection against ischemia-reperfusion injury may involve K+ ATP channels. Eur J Med Res, 2000, 5:145-149.
23、Mizumura T, Nithipatikom K, Gross GJ. Bimakalim, an ATP-sensitive potassium channel opener, mimics the effect of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in the dogs. Circulation, 1995, 92:1236-1245.
24、Mizumura T, Nithipatikom K, Gross GJ. Effects of nicorandil and infarct size, adenosine release, and neutrophil infiltration in the dog. Cardiovasc Res, 1995, 29:482-489.
25、Garlid KD, Paucek P, Yarov2Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res, 1997, 81: 1072-1081.
26、Ito H, Taniyama Y, Iwakura K, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol, 1999, 33: 654-660.
27、Das B, Sarkar C. Mitochondrial K ATP channel activation is important in the antiarrhythmic and cardioprotective effects of non-hypotensive doses of nico-randil and cromakalim during ischemia/ reperfusion: a study in an intact anesthetized rabbit model. Pharmacol Res, 2003, 47: 447-461.
28、Rajashree R, Koster J C, Markova KP, et al. Contractility and ischemic response of hearts from transgenic mice with altered sarcolemmal K ( ATP) channels. Am J Physiol Heart Circ Physiol, 2002, 283: H584-590.
29、Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997, 95: 320-323.
30、Ichinose M, Yonemochi H, Sato T, et al. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol Heart Circ Physiol, 2003, 284: H2235-2241.
31
32、Corbucci GC, Ricchi A, Lettieri B, et al. Signal transduction mechanisms and nitric oxide in hypoxic and ischemic human cardiac ventricular cell. Minerva Anestesiol, 2001, 67:791-796.
33、Krijnen, PAJ, Nijmeijer R, Meijer CJLM, et al. Apoptosis in myocardial ischaemia and infarction. Journal of Clinical Pathology, 2002, 55: 801-811.
34、McCully JD, Wakiyama H, Cowan DB, et al. Diazoxide amelioration of myocardial injury and mitochondrial damage during cardiac surgery. Ann Thorac Surg, 2002, 74: 2138-2145.
35、Wakiyama H, Cowan DB, Toyoda Y, et al. Selective opening of mitochondrial ATP-sensitive potassium channels during surgically induced myocardial ischemia decreases necrosis and apoptosis. Eur J Cardiothorac Surg, 2002, 21: 424-433.
36、Masaharu Akao, Andreas Ohler, Brian O’Rourke, et al. Sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res, 2001, 88: 1267-1275.
37、Xu M, Wang Y, Ayub A, et al. Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol Heart Circ Physiol, 2001, 281: H1295-1303.