基础与临床研究 >文章正文
基础与临床研究 >文章正文
The cerebral uptake of propofol during continued infusion at a constant rate<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 古妙宁 盖成林 林春水 欧阳铭文 徐建设 周俊岭 GU Miaoning,GA I Chenglin,LIN Chunshui,et al. Department of A nesthesiology,Nanf ang Hospital,First Military Medical University,Guang zhou 510515 Abstract Objective:To study the rate and time-course of the cerebral uptake of propofol during the intravenous continued infusion at a constant rate. Methods:Fourteen adult patients were randomlyassigned to receive a propofol infusion at a constant of 6mg/kg/h(group A)or 12mg/kg/h (group B)for 30-35min. Blood samples were taken simultaneously from radial artery and jugular venousbulb for measurement of propofol concentrations by high performance liquid chromatography. Results:Thearterial propofol concentrations(Ca) increased progressively during the first 15min after the start of propofolinfusion and became stable 15min later. J ugular bulb venous blood propofol concentrations (Cijbv) wereincreased progressively during the first 30min after the start of propofol infusion in group A and the first 20min in group B,but they were lower than Ca at the corresponding interval. 30min after the start ofpropofol infusion in group A and 20min in group B Cijbv became stable and close to Ca. There was significantdifference in the accumulated area between the arterial andjugular bulb venous concentration-time curves atthe different interval between the two groups before the equilibrium of cerebral uptake was achieved. Conclusions:Cerebral propofol uptake is rate- and time-dependent when administered at aconstant infusion rate,and there is a hysteresis between the arterial blood concentration and equilibrium ofcerebral uptake. Propofol is not metabolized in human brain. Key Words:Propofol;Pharmacokinetics;Infusions,intravenous;Brain;Metabolism |
近年来,静脉麻醉药异丙酚广泛应用于麻醉诱导,然而,脑作为异丙酚的靶器官,有关其摄取的研究报道国内外极少。鉴于异丙酚麻醉诱导时脑摄取量可用动脉、颈内静脉球部血药浓度-时间曲线下面积差(AUCa-v)来表示[1],本研究通过恒速静脉输注异丙酚并同步检测桡动脉、颈内静脉球部血药浓度的变化,研究异丙酚恒速静脉注射时脑摄取的情况。 <?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 资料与方法 临床资料 无心、脑、肝、肾功能障碍的择期手术患者14例,ASA I~II级,年龄35~60岁。随机分为A、B两组,以6和12mg/kg/h的恒定速度静脉输注进行麻醉诱导。 麻醉方法 所有患者均于术前30min肌注安定10mg、阿托品0.5mg。入室后平卧位,连接惠普21166型多功能监护仪,连续监测血压、脉搏氧饱和度、心电以及脑电等项指标。完善局麻下行肘正中静脉穿刺补液、行桡动脉穿刺置管备采集血样及测定动脉血压,并按Seldinger颈内静脉逆行穿刺法穿刺置管于球部备采集血样。处置后平稳10min,测定各项指标作为基础值。通过肘正中静脉用Graseby 3500型输注泵按分组要求持续输入异丙酚30~35min,面罩给氧,必要时扶助或控制呼吸,维持SpO2于98%以上,同步观测其它各项指标。以唤名无反应作为意识消失。30~35min后停止异丙酚输注,同时静注芬太尼3μg/kg、琥珀胆碱2mg/kg,并施表面麻醉行快速插管,连接Ohmeda210型麻醉机,控制呼吸,以N2O及异氟醚维持麻醉。 血标本采集与处理 两组患者均于给药前即刻、给药后1 、2 、4 、6 、8 、10 、15 、20 、25 、30min以及意识消失点同步采集桡动脉及颈内静脉球部血各1ml(A组采血点延至35min),置于肝素化试管中,离心(3 000r/min,5min)后,取上层血浆以乙氰∶高氯酸(2∶1)等量蛋白沉淀液进行沉淀,涡旋器震荡2min,再离心(12 000r/min,15min)后取上清夜50μl,以高效液相色谱-荧光法检测血药浓度[2]。 统计处理 应用统计软件SPSS10,进行统计学分析。组间年龄、体重、身高比较采用团体t检验;性别比较采用Fiser精确法检验。组间相应时点动脉、颈内静脉血药浓度和AUCa-v的比较采用团体t检验。组内相应时点动脉、颈内静脉血药浓度间比较采用配对t检验。组内各时间点动脉、颈内静脉血药浓度和AUCa-v的比较采用双因素方差分析,P<0.05认为有显著性差异。 结 果 两组年龄、性别、体重、身高无统计学差异。 恒速静脉输注异丙酚15min,两组桡动脉血药浓度(Ca)随 脑摄取平衡前各时点累积桡动脉、颈内静脉球部AUCa-v两组有显著性差异(P<0.05),其中A组累积AUCa-v变化曲线 30min随时间而升高(P<0.05),30~35min达稳态(P>0.05);B组曲线于起始 20min随时间而升高(P<0.05),20~30min达稳态(P>0.05),两组变化趋势见图2。 |
讨 论<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 异丙酚药代动力学研究[3]发现其体内过程符合三室开放模 Peacock 等[1]认为恒速静脉输注异丙酚时脑摄取量可用桡动脉、颈内静脉球部AUCa-v来表达。本研究结果显示,达到动静脉血药浓度平衡时A、B两组AUCa-v相同,即脑摄取量相等;而平衡前相应时点B组较A组摄取量大,说明恒速静脉输注异丙酚时,脑摄取量随异丙酚输注速度的增加而增加,同时,静脉输注异丙酚开始后两组AUCa-v随时间增加,B组于20min后、A组于30min后AUCa-v不再增加。提示异丙酚脑摄取达稳态前其摄取呈时间依赖性。脑摄取达稳态后脑摄取与时间无关。 动-静脉血药浓度达到平衡有两种可能,其一是相等,即出入脑的血药浓度之差为零,脑不再从血中摄取药物;其二是动静脉血药浓度差值为一常数,此情形常表明脑对此种药物摄取不只是分布,还存在着消除现象[5],脑摄取持续进行,以保持动态的平衡。本试验结果发现动静脉平衡后其浓度相差不大,说明异丙酚在人脑中基本无代谢,或代谢极少,这与Ludbrook[4]的动物实验报道的异丙酚脑中无代谢的结果相吻合。综上所述,本研究结果表明:恒速静脉输注异丙酚在脑摄取达平衡前,异丙酚的脑摄取呈速度和时间依赖性。异丙酚脑摄取平衡滞后于动脉血药浓度的平衡。人脑异丙酚基本无代谢或代谢极少。 参考文献 1. Peacock J E,Blackburn A,Sherry KM,et al. Arterial and jugular venous bulb blood propofol concentrations during induction of anesthesia. Anesth Analg,1995,80:1002-1006. 2. Pavan I,Buglione E,Massiccio M,et al. Monitoring propofol serum levels by rapid and sensitive reversed-phase high-performance liquid chromatography during prolonged sedation in ICU patients. J Chromatogr Sci,1992,30:164-166. 3. Gepts E,Jonckheer K,Maes V,et al. Disposition kinetics of propofol during alfentanil anesthesia. Anaesthesia,1988,43(Suppl):8-13. 4. Ludbrook GL,Upton RN,Martinez GA. Prolonged dysequilibriumbetween blood and brain concentrations of propofol during infusions in sheep. Acta Anaesthesiol Scand,1999,43:206-211. 5. Upton RN,Mather LE,Runciman WB,et al. The use of massbalance principles to describe regional drug distribution andelimination. J Pharmacokine Biopharm,1988,16:13-29. |